
Towards a correctly rounded xy in double precision

Tom Hubrecht (with Claude-Pierre Jeannerod, Paul Zimmermann)
November 07, 2023

LIP - Équipe AriC

Introduction

IEEE-754 rounding modes :

• Round to nearest, ties to even
• Round towards 0
• Round towards +∞
• Round towards −∞

Correct rounding :

• A given output is correctly rounded if it is the result of the selected
rounding function applied to the infinitely precise value.

• Beware of special inputs: ±0 , ±∞ , NaN

Tom Hubrecht - November 07, 2023 1/19

Previous work

• Books from Markstein [1], and Beebe [2]
• MathLib from IBM (Ziv [3], 1991)
• libmcr (Sun, 2004)
• CRlibm (De Dinechin, Lauter et al. [4], 2006)
• RLIBM and LLVM libc [5] (without a binary64 power function yet)

Tom Hubrecht - November 07, 2023 2/19

MathLib (Ziv, 1991)

• Only works in round to nearest
• Integrated in the GNU libc, but slow path removed in 2018 (after v2.27)
• No longer maintained
• Algorithm not detailed for xy

Tom Hubrecht - November 07, 2023 3/19

Libmcr (Sun, 2004)

• Only works in round to nearest mode.
• Does not terminate for some inputs e.g. :
x=0x1.470574d68e0afp+1 , y=0x1.02e0706205c0ep+1 .

• Some wrong results e.g. :
x=0x1.f80b060553772p-1 , y=0x1.99cp+13 gives
0x1.00001p+0 instead of 0x1.a2e7cca9cfd72p-297 .

• No longer maintained

Floating point hexadecimal litteral :

0x1.f80b060553772p-1 =
(
1+

4363619669456754
252

)
× 2−1

Closer to the machine representation.

Tom Hubrecht - November 07, 2023 4/19

Libmcr (Sun, 2004)

• Only works in round to nearest mode.
• Does not terminate for some inputs e.g. :
x=0x1.470574d68e0afp+1 , y=0x1.02e0706205c0ep+1 .

• Some wrong results e.g. :
x=0x1.f80b060553772p-1 , y=0x1.99cp+13 gives
0x1.00001p+0 instead of 0x1.a2e7cca9cfd72p-297 .

• No longer maintained

Floating point hexadecimal litteral :

0x1.f80b060553772p-1 =
(
1+

4363619669456754
252

)
× 2−1

Closer to the machine representation.

Tom Hubrecht - November 07, 2023 4/19

CRlibm

• Only works in round to nearest mode.
• Power function still experimental
• Algorithm detailed in Ch. Lauter’s PhD thesis [6]
• On hard to round cases, returns -5
• No longer maintained

Tom Hubrecht - November 07, 2023 5/19

Our contribution

• Open-Source in the CORE-MATH project [7]
• All rounding modes are supported
• A paper in ARITH 23 [8], with complete proofs of the first phase
(arguably very hard to read)

• Detailed explanations within the source code
• Performance comparable to incorrectly rounded math libraries

Tom Hubrecht - November 07, 2023 6/19

Performance

Library GLIBC (v2.38) LibUltim CRLibm CORE-MATH

Reciprocal throughput 23 60 110 30
Latency 60 105 150 72

Table 1: Timings (in number of cycles) for pow on an Intel Core i7-1260P

Methodology :

• Using rdtsc
• Randomly choose x, y ∈ [0, 10]

Tom Hubrecht - November 07, 2023 7/19

How to compute xy

Polynomial approximations and decomposing the evaluation are required.

• Markstein and Beebe propose to express xy = 2y·log2x, but the coefficients
of the Taylor expansions of 2t and log2(1+ t) at 0 are not nice.

• We prefer to use xy = ey·logx, where the argument reduction is more complex,
but the Taylor expansions have simpler coefficients [9].

Taylor expansions :

log2(1+ t) = log(2)−1 ×
(
t− t

2
+

t3

3
− · · ·

)
log(1+ t) = t− t

2
+

t3

3
− · · ·

2t = 1+ t log(2) +
(t log(2))2

2
+ · · ·

et = 1+ t+
t2

2
+ · · ·

For a result in double precision, we need to use more precise intermediate values.

Tom Hubrecht - November 07, 2023 8/19

How to compute xy

Polynomial approximations and decomposing the evaluation are required.

• Markstein and Beebe propose to express xy = 2y·log2x, but the coefficients
of the Taylor expansions of 2t and log2(1+ t) at 0 are not nice.

• We prefer to use xy = ey·logx, where the argument reduction is more complex,
but the Taylor expansions have simpler coefficients [9].

Taylor expansions :

log2(1+ t) = log(2)−1 ×
(
t− t

2
+

t3

3
− · · ·

)
log(1+ t) = t− t

2
+

t3

3
− · · ·

2t = 1+ t log(2) +
(t log(2))2

2
+ · · ·

et = 1+ t+
t2

2
+ · · ·

For a result in double precision, we need to use more precise intermediate values.

Tom Hubrecht - November 07, 2023 8/19

How to compute xy

Polynomial approximations and decomposing the evaluation are required.

• Markstein and Beebe propose to express xy = 2y·log2x, but the coefficients
of the Taylor expansions of 2t and log2(1+ t) at 0 are not nice.

• We prefer to use xy = ey·logx, where the argument reduction is more complex,
but the Taylor expansions have simpler coefficients [9].

Taylor expansions :

log2(1+ t) = log(2)−1 ×
(
t− t

2
+

t3

3
− · · ·

)
log(1+ t) = t− t

2
+

t3

3
− · · ·

2t = 1+ t log(2) +
(t log(2))2

2
+ · · ·

et = 1+ t+
t2

2
+ · · ·

For a result in double precision, we need to use more precise intermediate values.

Tom Hubrecht - November 07, 2023 8/19

The table maker’s dilemma

Hard to round case :
pow(0x1.0bf06323f41cfp-1, 0x1.4p-2) ≈ 0x1.a2334671ea7f7000000000000074p-1
Midpoint case :
pow(0x1.4p-44, 0x1.7p+4) = 0x1.52d02c7e14af68p-1005
Exact case :
pow(0x1.8p-33, 0x1.fp+4) = 0x1.18e2a5afb5158p-1005

Tom Hubrecht - November 07, 2023 9/19

Exact and midpoint cases

xy may be representable with 53 bits (an exact double) or 54 bits (a midpoint).

In theory, we need an infinitely precise result to compute
the correctly rounded result. Hence filtering them is necessary.

Thanks to Ch. Lauter and V. Lefèvre ([10], 2009),
we have an efficient algorithm to treat those cases.

Tom Hubrecht - November 07, 2023 10/19

Workflow

• Three-phase approach, with increasing precision
• Filter the exact and midpoint cases between the second and third phase
• Probability to use the second phase roughly 2prec−p, where :

prec is the computation precision and p the number of bits of the significand
Thus, we target ∼67 bits of precision at first.

• Because of compounded errors, we need more precision for the logarithm

Tom Hubrecht - November 07, 2023 11/19

Specification for the first phase

Operations use a mix of double values and double doubles (b = bh + bℓ)

• log_1 (Approx. of log(x)) takes a double and returns a double double
• p_1 (Approx. of log(1+ z)) also
• exp_1 (Approx. of exp(y)) takes a double double
and returns a double double

• q_1 (Approx. of exp(z)) takes a double and returns a double double

Tom Hubrecht - November 07, 2023 12/19

Approximation of log(x)

Algorithm 1 log(x)
let x = 2E · y ▷ With 1 ≤ y < 2
if y >

√
2 then

y← y
2

E← E+ 1
end if
i←

⌊
y× 28

⌋
z← y · ri − 1 ▷ z is computed without rounding thanks to an FMA
return E · ln(2)− ln(ri) + ln(1+ z)

• ln(1+ z) is computed with a polynomial approximation

Tom Hubrecht - November 07, 2023 13/19

Approximation of log(1+ z)

• FPminimax polynomial approximation, found with Sollya [11]
• Estrin method for evaluation allows parallelism via hardware

P(X) =
n∑

i=0

aiXi

Horner method :

P(X) = a0 + X× (a1 + X× (a2 + X× · · ·))

Estrin method :

P(X) =
[
a0 + X2 × (a2 + X2 × · · ·)

]
+ X×

[
a1 + X2 × (a3 + X2 × · · ·)

]

Lemma
Given |z| ≤ 33 · 2−13 , with z ∈ 2−61 · Z , the approximation ph + pℓ
returned by p_1 satisfies :

|ph + pℓ − (log(1+ z)− z)| < 2−75.492

with |ph| < 2−16.9 , |pℓ| < 2−25.446 .

If z ̸= 0, |z| ≤ 32 · 2−13 , the relative error is smaller than 2−67.441

Tom Hubrecht - November 07, 2023 14/19

Approximation of log(1+ z)

• FPminimax polynomial approximation, found with Sollya [11]
• Estrin method for evaluation allows parallelism via hardware

P(X) =
n∑

i=0

aiXi

Horner method :

P(X) = a0 + X× (a1 + X× (a2 + X× · · ·))

Estrin method :

P(X) =
[
a0 + X2 × (a2 + X2 × · · ·)

]
+ X×

[
a1 + X2 × (a3 + X2 × · · ·)

]

Lemma
Given |z| ≤ 33 · 2−13 , with z ∈ 2−61 · Z , the approximation ph + pℓ
returned by p_1 satisfies :

|ph + pℓ − (log(1+ z)− z)| < 2−75.492

with |ph| < 2−16.9 , |pℓ| < 2−25.446 .

If z ̸= 0, |z| ≤ 32 · 2−13 , the relative error is smaller than 2−67.441

Tom Hubrecht - November 07, 2023 14/19

Approximation of log(1+ z)

• FPminimax polynomial approximation, found with Sollya [11]
• Estrin method for evaluation allows parallelism via hardware

P(X) =
n∑

i=0

aiXi

Horner method :

P(X) = a0 + X× (a1 + X× (a2 + X× · · ·))

Estrin method :

P(X) =
[
a0 + X2 × (a2 + X2 × · · ·)

]
+ X×

[
a1 + X2 × (a3 + X2 × · · ·)

]

Lemma
Given |z| ≤ 33 · 2−13 , with z ∈ 2−61 · Z , the approximation ph + pℓ
returned by p_1 satisfies :

|ph + pℓ − (log(1+ z)− z)| < 2−75.492

with |ph| < 2−16.9 , |pℓ| < 2−25.446 .

If z ̸= 0, |z| ≤ 32 · 2−13 , the relative error is smaller than 2−67.441

Tom Hubrecht - November 07, 2023 14/19

Approximation of exp(y · log(x))

Algorithm 2 exp(x)
k←

⌊
x · 212

ln(2)

⌉
y← x− k · ln(2)212

let k = M · 212 + i2 · 26 + i1 ▷ With 0 ≤ i1, i2 < 26

t1 ← 2i2/26 , t2 ← 2i1/212

return 2M · t1 · t2 · ey

Tom Hubrecht - November 07, 2023 15/19

Formal proofs for bounds

Thanks to a huge and incredible work from Laurence Rideau and Laurent Théry,
the error bounds obtained by hand in 10 pages of annexes for the ARITH paper
are now formally proven in Coq for the first phase of the algorithm.

The repository containing the proof is at :

https://github.com/thery/ExpFloat

Tom Hubrecht - November 07, 2023 16/19

https://github.com/thery/ExpFloat

Software floating-point formats

• Use 64 bit integers for the exponent, unsigned integers for the significand
(128 or 256 bits)

• Allows for a wider range of values
• Multiple addition and multiplication algorithms implemented
(tailored to the width of data used)

• Better hardware implementations

Tom Hubrecht - November 07, 2023 17/19

Extended floating point formats

• First phase uses double double values
• Experiment using triple double values in the second phase

- Format is closer to the inputs
- More complex algorithms,
based on previous work by N. Fabiano, J. Picot, J.-M. Muller [12]

- Taking into account drastic optimisation,
at least twice slower than using emulated floating point formats

- The exact phase requires integer significands, so conversion needed

Tom Hubrecht - November 07, 2023 18/19

Main achievements and future perspectives

• Correct results in all rounding modes (up to the knowledge of worst-cases)
• Fully compliant with IEEE-754 (regarding special cases)
• Detailed proofs and error analysis
• Faster execution times than previous work (2× improvement)
• Single execution path for all rounding modes
• A new version, 25% faster than in the paper

• Work is still required to find worst cases
• Would be great to have more automation in the proofs,
(e.g. use Gappa to formalize the errors in the second and third phases)

Tom Hubrecht - November 07, 2023 19/19

References

[1] Peter Markstein. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard Professional
Books. Prentice Hall, 2000.

[2] Nelson H. F. Beebe. The Mathematical-Function Computation Handbook - Programming Using the
MathCW Portable Software Library. Springer, 2017. ISBN: 978-3-319-64109-6. DOI:
10.1007/978-3-319-64110-2.

[3] A. Ziv. “Fast evaluation of elementary mathematical functions with correctly rounded last bit”. In: 17.3
(1991), pp. 410–423.

[4] Catherine Daramy-Loirat et al. CR-LIBM: A library of correctly rounded elementary functions in
double-precision. Research Report.
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804. LIP, 2006.

[5] The LLVM C Library. https://libc.llvm.org/.

[6] Christoph Q. Lauter. “Arrondi correct de fonctions mathématiques. Fonctions univariées et bivariées,
certification et automatisation”. PhD thesis. Université de Lyon - École Normale Supérieure de Lyon, 2008.

[7] Alexei Sibidanov, Paul Zimmermann, and Stéphane Glondu. “The CORE-MATH Project”. In: ARITH 2022 -
29th IEEE Symposium on Computer Arithmetic. virtual, France, 2022. URL:
https://hal.inria.fr/hal-03721525.

Tom Hubrecht - November 07, 2023

https://doi.org/10.1007/978-3-319-64110-2
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://libc.llvm.org/
https://hal.inria.fr/hal-03721525

References

[8] Tom Hubrecht, Claude-Pierre Jeannerod, and Paul Zimmermann. “Towards a correctly-rounded and fast
power function in binary64 arithmetic”. URL: https://inria.hal.science/hal-04159652.

[9] Jean-Michel Muller et al. Handbook of Floating-Point Arithmetic, 2nd edition. ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-3-319-76525-9. Birkhäuser Boston, 2018, p. 632.

[10] Christoph Quirin Lauter and Vincent Lefèvre. “An Efficient Rounding Boundary Test for pow(x, y) in
Double Precision”. In: 58.2 (2009), pp. 197–207.

[11] Sylvain Chevillard, Mioara Maria Joldes, and Christoph Lauter. “Sollya: an environment for the
development of numerical codes”. In: Third International Congress on Mathematical Software - ICMS
2010. Ed. by Komei Fukuda et al. Vol. 6327. Lecture Notes in Computer Science. Kobe, Japan: Springer, 2010,
pp. 28–31. DOI: 10.1007/978-3-642-15582-6_5.

[12] Nicolas Fabiano, Jean-Michel Muller, and Joris Picot. “Algorithms for Triple-Word Arithmetic”. In: IEEE
Transactions on Computers 68.11 (2019), pp. 1573–1583. DOI: 10.1109/TC.2019.2918451.

Tom Hubrecht - November 07, 2023

https://inria.hal.science/hal-04159652
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1109/TC.2019.2918451

Reasons for slow-path removal

Wilco Dijkstra <wdijkstr@arm.com> Mon, 12 Feb 2018
Remove the slow paths from pow. Like several other double precision
math functions, pow is exactly rounded.
This is not required from math functions and causes major overheads
as it requires multiple fallbacks using higher precision arithmetic
if a result is close to 0.5ULP.
Ridiculous slowdowns of up to 100000x have been reported when the highest
precision path triggers.

Tom Hubrecht - November 07, 2023

	Appendix

