Useful applications of correctly-rounded operators of the form ab + cd + e

Tom Hubrecht, Claude-Pierre Jeannerod, Jean-Michel Muller June 10, 2024

LIP - Équipe AriC - Lyon, France

Introduction

• Introduction of the FMA 30 years ago

$$s = RN(ab + c)$$

- Efficient correctly rounded square root, division and double-word algorithms
- Faster computations (dot product, polynomial evaluation)

• Introduction of the FD2A (FDP, FDPA) recently, what is possible now?

$$s = \mathsf{RN} \left(ab + cd + e \right)$$

Tom Hubrecht - June 10, 2024 1/15

Assumptions and notation

- Floating-point arithmetic of radix 2 and precision *p*, unbounded exponent range, conforms to IEEE-754 assuming no underflows or overflows;
- $u := 2^{-p}$ is the unit roundoff;
- \mathbb{F} is the set of FP numbers;
- RN the rounding function, rounds to nearest, ties to even;
- $\mathsf{FD2}(a,b,c,d) := \mathsf{RN}\,(ab+cd),$ $\mathsf{FD2A}(a,b,c,d,e) := \mathsf{RN}\,(ab+cd+e),$ with $a,b,c,d,e \in \mathbb{F}$;

Tom Hubrecht - June 10, 2024 2/15

Outline

Complex arithmetic

Error Free Transforms

Products of three or four numbers

Discriminants

Dot products

More efficient double word arithmetic

Tom Hubrecht - June 10, 2024 3/15

Complex arithmetic

Correctly rounded multiplication

Let x = a + ib and y = c + id with $a, b, c, d \in \mathbb{F}$,

• For addition and subtraction, CR results are automatic:

$$(x \pm y) = (a \pm c) + i(b \pm d)$$

Multiplication needs more to avoid cancellation:

$$x \times y = (ac - bd) + i(ad + bc)$$

Two problems can arise when using only **FP** multiplications and **FMA**: catastrophic cancellation and failure to compute a deserved zero.

Tom Hubrecht - June 10, 2024 4/15

Division and Square Root

$$\frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$

Complex division can be computed with two FP divisions and three FD2 operations with a relative error bound of 3u.

$$\sqrt{a^2+b^2}$$
 can be computed as $RN\left(\sqrt{RN\left(a^2+b^2\right)}\right)$

This results in an error bound less than $\frac{3u}{2}$, compared with 2u for the naive algorithms.

Tom Hubrecht - June 10, 2024 5/15

Error Free Transforms

General Error Free Transforms

Compute the rounded result and the error to the correct result.

- The error of \times can be computed exactly with an FMA
- The error of + can be computed with an Add3 (or AugmentedAddition)
- The CR value of an FMA error RN $(ab+c-{\sf RN}\,(ab+c))$ can be computed with an FD2A

They can all be seen as special cases of an FD2A operator, and it also allows for simpler implementations of TwoSum / FastTwoSum which are EFTs of the addition.

Tom Hubrecht - June 10, 2024 6/15

Extension of Sterbenz's lemma

Original lemma

Given $a, b \in \mathbb{F}$ such that $\frac{1}{2}a \le -b \le 2a$, then RN(a+b) = a+b.

For $a,b,c,d\in\mathbb{F}$ and $\frac{1}{2}ab\leq -cd\leq 2ab$, for:

- $P_h = \mathsf{RN} (ab + cd)$
- $P_{\ell} = \mathsf{RN} \left(ab + cd P_h \right)$

In this case, the error of an **FD2** operation is a floating-point number, and we have exactly:

$$ab + cd = P_h + P_\ell$$

Hence ab + cd fits in two floats instead of four.

Tom Hubrecht - June 10, 2024 7/15

Products of three or four numbers

abc + d and abcd

Given $a, b, c, d \in \mathbb{F}$, we can compute:

•
$$p_h = RN(ab)$$

•
$$p_\ell = \mathsf{RN}\,(ab - p_h) = ab - p_h$$
 // Exact operation

•
$$q = \mathsf{RN} \left(p_h c + p_\ell c + d \right) = \mathsf{RN} \left(abc + d \right)$$

It is useful for computing elementary functions (e.g. $1 + x^2 P(x)$ for the cosine).

Using the same method, we can do:

- $q_h = \mathsf{RN}\left(abc\right)$
- $q_{\ell} = \mathsf{RN} \left(abc q_h \right)$
- $\hat{r} = \mathsf{RN} \, (q_h d + q_\ell d) \simeq abcd$ with a relative error $\leq u$

Tom Hubrecht - June 10, 2024 8/15

Discriminants

Quadratic equations

Considering $ax^2 + bx + c = 0$, we have: $\Delta = b^2 - 4ac$ which can be obtained (with correct rounding) in one FD2 instruction.

Furthermore.

•
$$\Delta_{+\times} = \mathsf{RN}\left(\mathsf{RN}\left(b^2\right) - \mathsf{RN}\left(4ac\right)\right)$$

•
$$\Delta_{FMA_1} = \mathsf{RN} \left(\mathsf{RN} \left(b^2 \right) - 4ac \right)$$

•
$$\Delta_{FMA_2} = \mathsf{RN}\left(b^2 - \mathsf{RN}\left(4ac\right)\right)$$

Those computation don't even guarantee the sign of the discriminant, e.g.

•
$$(a, b, c) = (\frac{1}{4} - \frac{u}{2}, 1, 1 + 2u) \implies \Delta_{+\times} = 0, \quad \Delta < 0$$

•
$$(a, b, c) = (\frac{1}{4} - \frac{u}{4}, 1 - u, 1 - u) \implies \Delta_{FMA_1} < 0, \quad \Delta = 0$$

Tom Hubrecht - June 10, 2024 9/15

Depressed cubic equations

$$x^{3} + bx + c = 0$$
 gives $\Delta = -4b^{3} - 27c^{2}$

Again, an implementation with or without an **FMA** can give a result with the wrong sign.

$$egin{aligned} \delta_1 &= \mathsf{RN} \left(4b^3
ight) \ \delta_2 &= \mathsf{RN} \left(27c^2
ight) \ \Delta_{\mathsf{FD2}} &= \mathsf{RN} \left(-\delta_1 - \delta_2
ight) \end{aligned}$$

This computation guarantees that when the result is non-zero, it will have the same sign as Δ because RN is increasing.

Tom Hubrecht - June 10, 2024 10/15

Dot products

Inner products and sums

Given $x,y\in\mathbb{F}^n$ and $r=x^Ty$, we can compute an approximation of r with n FMA operations such that $|r_{\text{FMA}}-x^Ty|\leq nu|x|^T|y|$

With an FD2A we can divide the bounds by 2:

$$|r_{ extsf{FD2A}} - x^T y| \leq m u |x|^T |y|$$
 in m operations, $m = \lceil rac{n}{2}
ceil$

Tom Hubrecht - June 10, 2024 11/15

Compensated algorithms

One can also use the following recursions:

- $r_i := \mathsf{RN}\left(r_{i-1} + x_i y_i\right)$
- $e_i := RN (r_{i-1} + x_i y_i r_i)$

At the end, $r_{\text{COMP}} = \text{RN} (r_{\text{FMA}} + e)$ such that

$$|r_{\text{COMP}} - x^T y| \le u|x^T y| + \lambda_{\text{COMP}}|x|^T |y|$$

with $\lambda_{\text{\tiny COMP}}=(rac{1}{2}n^2+n)u^2+(rac{1}{4}n^3+rac{1}{4}n^2)u^3.$

This value is approximately half of the one in the classic approach, using n+1 FMA, n-1 FD2A and $\lfloor \frac{n}{2} \rfloor$ ADD3, $10 \times$ less compared with the classical $\sim 25n$ flops.

Tom Hubrecht - June 10, 2024 12/15

More efficient double word

arithmetic

New algorithms

The availability of an **FD2A** allows simpler algorithms to be written, with better error bounds.

Algorithm 1 : TwoSum_Add3(a, b).

- 1: $s \leftarrow RN(a+b)$
- 2: $e \leftarrow RN(a+b-s)$

$$//a+b=e+s$$
 (EFT)

Algorithm 2 : DWTimesFP_FD2A(a_h, a_ℓ, b). Computes a DW approximation z to ab.

- 1: $s \leftarrow \mathsf{RN}\left(a_h \cdot b + a_\ell \cdot b\right)$
- 2: $e \leftarrow \mathsf{RN}\left(a_h \cdot b + a_\ell \cdot b s\right)$
- 3: $(z_h, z_\ell) \leftarrow \mathsf{TwoSum_Add3}(s, e)$

The most accurate current algorithm takes 10 operations and has an error bound of $\frac{3}{2}u^2 + 4u^3$, compared with $\frac{u^2}{2}$ in 4 operations here.

Tom Hubrecht - June 10, 2024 13/15

Simpler analysis of algorithms

Algorithm 3 : DWPlusFP_FD2A(a_h, a_ℓ, b). Computes a DW approximation c to a + b.

- 1: $(s,f) \leftarrow \mathsf{TwoSum_Add3}(a_h,b)$
- 2: $e \leftarrow \mathsf{RN}\left(f + a_{\ell}\right)$
- 3: $(c_h, c_\ell) \leftarrow \mathsf{TwoSum_Add3}(s, e)$

This algorithm has the same asymptotic error bound of 2u as the conventional algorithm, but without mixing **TwoSum** and **FastTwoSum**, simplifying the error analysis.

Tom Hubrecht - June 10, 2024 14/15

Smaller error bounds

Without designing new algorithms, error bounds are automatically improved thanks to more precise intermediate steps.

Algorithm 4 : DWDivDW_FD2A(a_h, a_ℓ, b_h, b_ℓ). Computes a DW approximation z to a/b.

```
1: t_h \leftarrow \mathsf{RN}\left(1/b_h\right)
```

2:
$$r_h \leftarrow \mathsf{RN} \left(1 - t_h \cdot b_h \right)$$

3:
$$r_{\ell} \leftarrow -\mathsf{RN}\left(t_h \cdot b_{\ell}\right)$$

4:
$$(e_h, e_\ell) \leftarrow \mathsf{TwoSum_Add3}(r_h, r_\ell)$$

5:
$$(\delta_h, \delta_\ell) \leftarrow \mathsf{DWTimesFP_FD2A}(e_h, e_\ell, t_h)$$

6:
$$(m_h, m_\ell) \leftarrow \mathsf{DWPlusFP_FD2A}(\delta_h, \delta_\ell, t_h)$$

7:
$$(z_h, z_\ell) \leftarrow \mathsf{DWTimesDW_FD2A}(a_h, a_\ell, m_h, m_\ell)$$

The error bound is $7.8u^2$ instead of $9.8u^2$ without changing anything.

Tom Hubrecht - June 10, 2024 15/15

Many things are possible!

- Easier error analyses
- Simpler algorithms (design and analysis)
- Better accuracy and more correctly rounded results
- More examples in our paper, e.g. Horner's evaluation, Rounded to nearest multiplication by real constants such as e or π

• . .

Some references

- [1] R. K. Montoye, E. Hokonek, and S. L. Runyan. "Design of the IBM RISC System/6000 floating-point execution unit". In: IBM J. Res. Dev. (1990).
- [2] P. Markstein. "Computation of Elementary Functions on the IBM RISC System/6000 Processor". In: IBM J. Res. Dev. (1990).
- [3] Benoît Dupont de Dinechin, Julien Hascoet, and Orégane Desrentes. "In-Place Multicore SIMD Fast Fourier Transforms". In: HPEC Proc. 2023.
- [4] Orégane Desrentes, Benoît Dupont de Dinechin, and Florent de Dinechin. "Exact fused dot product add operators". In: ARITH Proc. 2023.
- [5] Marat Dukhan, Richard Vuduc, and Jason Riedy. Wanted: Floating-Point Add Round-off Error instruction. Preprint (https://arxiv.org/abs/1603.00491) and PMMA16 slides (https://blogs.fau.de/hager/bofs/isc16-workshop). 2016.
- [6] Jean-Michel Muller and Laurence Rideau. "Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic". In: ACM Trans. Math. Soft. (2022). DOI: 10.1145/3484514.
- [7] N. Louvet. "Algorithmes Compensés en Arithmétique Flottante: Précision, Validation, Performances". PhD thesis. U. Perpignan, 2007.
- [8] Jean-Michel Muller et al. Handbook of Floating-Point Arithmetic. English. Birkhäuser, 2018, p. 627.
- [9] Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi. "Accurate Sum and Dot Product". In: SIAM J. Sci. Comput. (2005). DOI: 10.1137/030601818.
- [10] N. Brisebarre and J.-M. Muller. "Correctly rounded multiplication by arbitrary precision constants". In: IEEE Trans. Comp. (2008). DOI: 10.1109/TC.2007.70813.
- [11] IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2019). 2019. DOI: 10.1109/IEEESTD.2019.8766229.