Polynomial approximation with size-constrained coefficients

Tom Hubrecht, with Nicolas Brisebarre, Sylvain Chevillard, Guillaume Hanrot, Serge Torres

Jeu. 26 juin 2025: NuSCAP Nantes

• Polynomial approximation: Given $f: I \subset \mathbb{R} \to \mathbb{R}$, find $P \in \mathbb{R}_n[X]$ "close" to f

• Polynomial approximation: Given $f: I \subset \mathbb{R} \to \mathbb{R}$, find $P \in \mathbb{R}_n[X]$ "close" to f

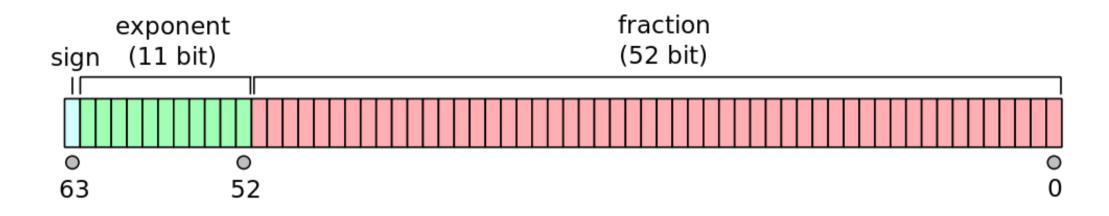
• Size-constrained coefficients: That can be represented on some finite amount of memory (e.g. 64 bits)

But why?

We want:

- To evaluate numerically various mathematical functions
- Use computers to do the work

Limited precision of machine numbers



 $\hat{x} = (-1)^s \times 2^e \times 1.f$

 $\log(2) \approx 0.693147180559945$ o($\log(2)$) = 0x1.62e42fefa39efp-1

Where o(x) is the closest floating-point number to x

The operations at our disposal are: +, ×, –, \sqrt{x} , /

We need to use approximations to compute numerical values of functions.

In most cases, we work with polynomial approximations:

$$\exp(z) \approx a_0 + z \times \left(a_1 + z \times \left(a_2 + z \times \left(a_3 + z \times a_4\right)\right)\right)$$

- All programs use libraries: sets of (mostly) standard functions to avoid reinventing the wheel (and making mistakes).
- To compute mathematical functions, there are "libm"s implementing exp, log, sin, ...
- List of mathematical functions defined in standards as IEEE754, ISO/IEC 9899
- Several of them coexist: glibc, LLVM math library, CORE-MATH, ...

- Speed is a big requirement, those functions will be used more than 100M times
- Accuracy varies and is not always defined

The evaluation \hat{f} of a function f is correctly rounded is $\hat{f}(x)$ is the closest floating-point value to f(x).

It is necessary in multiple domains :

- Distributed computations, HPC
- Any application requiring reproducible results

But, it is a much harder property to guarantee than, e.g., "52 bits of precision" out of the 53 bits of doubles

Three steps are usually observed:

1. Range reduction: go from \mathbb{R} to I a small segment for the inputs

- Using various equalities: e.g. $log(2^k x) = log(x) + k \times log(2)$
- 2. Use a polynomial approximation of f over I
- 3. Reconstruct the final result
- If Correct Rounding is required, this may be done several times with increasing precision

- A "library" of correctly-rounded functions¹
- Computed as $\exp(y \times \log(x))$
- Three phases to attain Correct Rounding
- Requires 6 polynomial approximations in total

¹https://core-math.gitlabpages.inria.fr/ T. Hubrecht | NuSCAP Nantes | 26/06/2025

Polynomial Approximation

In the end, it is the foundation of numerical evaluation, and needs to be:

- Fast, as it is in the critical path
- Accurate, to not have to redo computations

I.e. we want a polynomial with the smallest number of coefficients possible while maintaining a necessary accuracy.

What does "*q* bits of precision" mean ?

For an approximation *P* of *f* over $I = [a, b] \subset \mathbb{R}$:

• Absolute error:
$$||P - f||_{\infty} = \max_{x \in I} |P(x) - f(x)|$$

• Relative error:
$$\left\|\frac{P-f}{f}\right\|_{\infty} \approx \max_{x \in I} \left|\frac{P(x)-f(x)}{f(x)}\right|$$

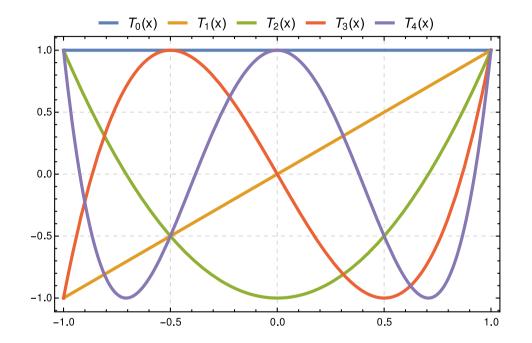
Thus, "q bits of precision" means a relative error smaller than 2^{-q}

- Real polynomial: $Q = \sum a_i x^i$ with $a_i \in \mathbb{R}$, \Rightarrow used when minimizing absolute errors, but not enough for relative errors.
- Generalized polynomial: $G = \sum a_i \varphi_i$, with $\varphi_i : \mathbb{R} \to \mathbb{R}$

• Special case: $\sum a_i \frac{x^i}{f}$, \Rightarrow used when minimizing the relative error, with the target $x \mapsto 1$

- For real polynomials, a minimax approximation p^* of f over $I \subset \mathbb{R}$ of degree $n \in \mathbb{N}$ is the polynomial $P \in \mathbb{R}_n[x]$ that minimizes the absolute error.
- Under some conditions, it is the same using generalized polynomials.
- As a non-linear problem, we have an iterative algorithm to solve it.

Chebyshev polynomial of the first kind



- $T_n(\cos(\theta)) = \cos(n\theta)$
- Orthogonal family

•
$$T_n^{-1}(0) = \left\{ \cos\left(\frac{2k+1}{2n}\pi\right) : k \in [[0, n-1]] \right\}$$

T. Hubrecht | NuSCAP Nantes | 26/06/2025

Computing the minimax is a non-linear problem, that can be approximated by linear ones.

- Optimal: minimax polynomial
- Truncated Chebyshev Series or Interpolation polynomial at the Chebyshev nodes of first kind are "good approximations"

$$\Lambda(L) \coloneqq \sup_{f} \frac{\|Lf\|_{\infty}}{\|f\|_{\infty}}$$

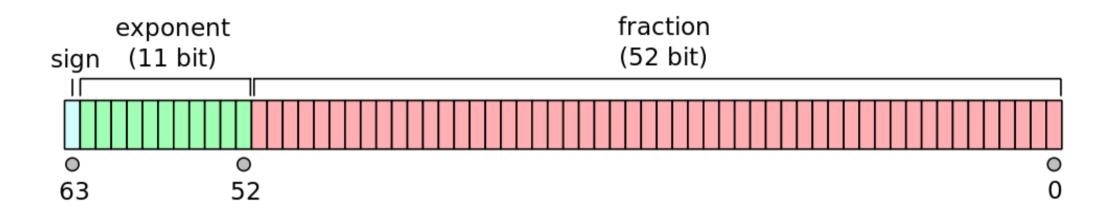
- For a linear approximation L, and p^* the minimax, $||f Lf||_{\infty} \le (1 + \Lambda(L)) ||f p^*||_{\infty}$
- Truncated Chebyshev series of degree n > 1: $\frac{4}{\pi^2} \log(n-1) + 3 > \Lambda(TCS_n) \ge \frac{4}{\pi^2} \log(n+1)$
- Interpolation of degree n: $\frac{2}{\pi}\log(n+1) + 1 \ge \Lambda(I_n) \ge \frac{2}{\pi}\left(\log(n+1) + \gamma + \log\left(\frac{4}{\pi}\right)\right)$

In the following, I = [-1, 1] (up to a linear change of variable)

The truncated Chebyshev series of degree *n* is the orthogonal projection of *f* onto the subspace $\text{Span}(1, x, ..., x^n)$ for the inner product $\langle f, g \rangle \coloneqq \int_{-1}^{1} fg \frac{dx}{\sqrt{1-x^2}}$

Therefore, we can approximate the non-linear minimization problem by a projection in some L^2 function space.

Machine-efficient polynomials

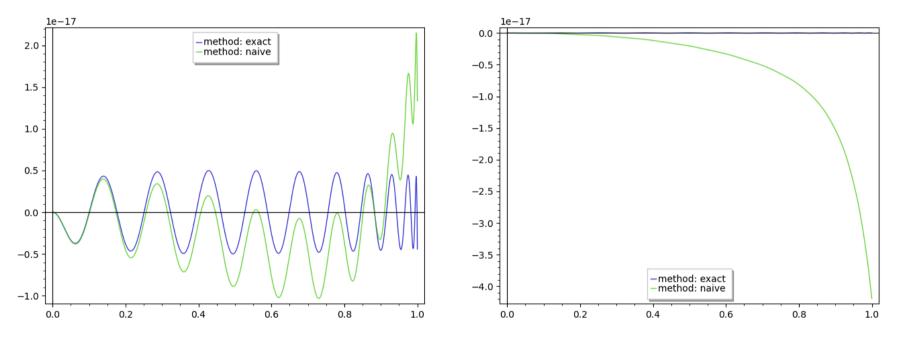


Without a stroke of luck, real coefficients of polynomial approximations are not representable as floating-point numbers of fixed precision.

Taken from "Scientific Computing on Itanium-Based Systems"²

- Odd function \Rightarrow only consider odd powers of x
- Pin the first coefficient to 1 (save a multiplication)
- Use the symmetry to approximate over [0, 1] instead
- Minimizing the relative error

• First idea: round each coefficient of the minimax (best approximation)



• Lose accuracy when increasing the degree (43 vs. 47)

Floating-point numbers are of the form $2^{e_i}m_i$ with $m_i \in [2^{p-1}, 2^p - 1]$

- For the same exponent, the values are regularly placed on the reals
- But not when the exponent changes... \Rightarrow non linear set

For each coefficient, we need to find both e_i and m_i

- Finding both at the same time is tricky
- We first set e_i and then search for a corresponding m_i

- Compute the projection with real coefficients $P = \sum a_i x^i$ and set $e_i = \lfloor p_i \log_2(|a_i|) \rfloor$
- Works when the precision is high enough (e.g. doubles)
- If it fails, adjust the exponents and start again

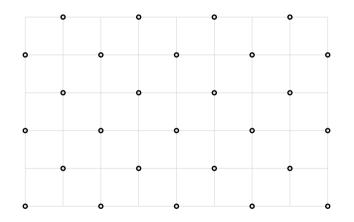
We look for an approximation of the form $P: x \mapsto \left(\sum_{i=0}^{n} m_i 2^{e_i} \cdot x^i\right), |m_i| \in \mathbb{N} < 2^p - 1.$

• When e_i is set heuristically, we search for a vector of the lattice generated by $(2^{e_i} \cdot x^i)_{i \in [\![0,n]\!]}$ that is close to f.

• For relative error, use the basis
$$\left(2^{e_i} \cdot \frac{x^i}{f}\right)_{i \in [\![0,n]\!]}$$
 and the target $x \mapsto 1$

A Euclidean lattice is $L = \text{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

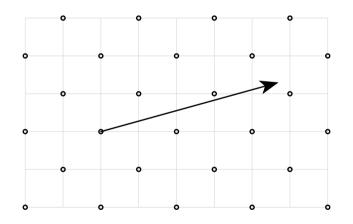
 $E \supset L$ is a vector space.



The "Closest Vector Problem" is, for $x \in E$ and $\|\cdot\|$ a norm over E, to find $y \in L$ such that $\|x - y\|$ is small.

A Euclidean lattice is $L = \text{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

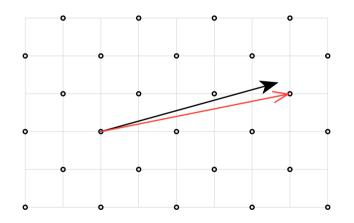
 $E \supset L$ is a vector space.



The "Closest Vector Problem" is, for $x \in E$ and $\|\cdot\|$ a norm over E, to find $y \in L$ such that $\|x - y\|$ is small.

A Euclidean lattice is $L = \text{Span}_{\mathbb{Z}}(b_0, ..., b_n)$, for $(b_i)_{i \in [0,n]}$ a family of linearly independent vectors.

 $E \supset L$ is a vector space.



The "Closest Vector Problem" is, for $x \in E$ and $\|\cdot\|$ a norm over E, to find $y \in L$ such that $\|x - y\|$ is small.

The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

The LLL algorithm (improving the basis)

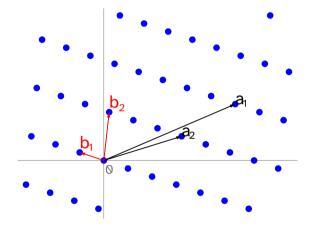
For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, $b_i = b_i^*$ its orthogonalised vector.

The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, $b_i = b_i^*$ its orthogonalised vector.



LLL algorithm: transforms $(a_0, ..., a_n)$ into $(b_0, ..., b_n)$ such that $||b_1|| \le 2^{\frac{n}{2}} \min_{x \in L} (||x||)$.

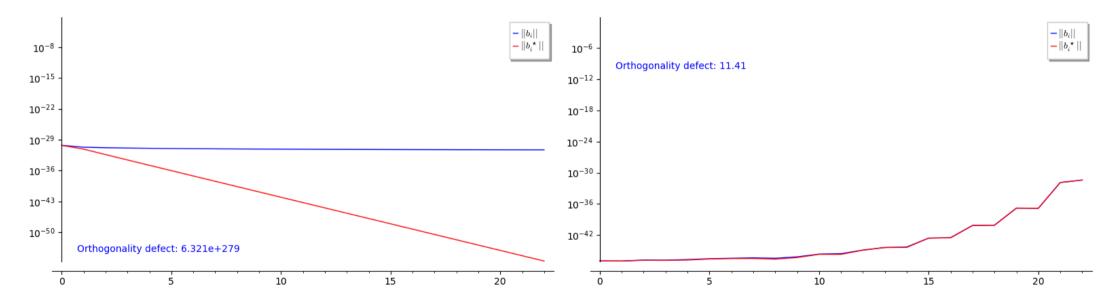
In our case, the basis is not average⁵ and gives better results.

⁵Nguyen, P.Q., Stehlé, D. (2006). LLL on the Average

T. Hubrecht | NuSCAP Nantes | 26/06/2025

Polynomial bases are special

Starting Lattice basis $\underbrace{x^3}_{a_0}, \underbrace{x^5}_{a_1}, \dots, \underbrace{x^{47}}_{a_{22}}$, and $a_0^{\star}, \dots, a_{22}^{\star}$ the orthogonalized family, transformed into (b_0, \dots, b_{22}) and $(b_0^{\star}, \dots, b_{22}^{\star})$



Orthogonality defect: measures how non-orthogonal the lattice basis is

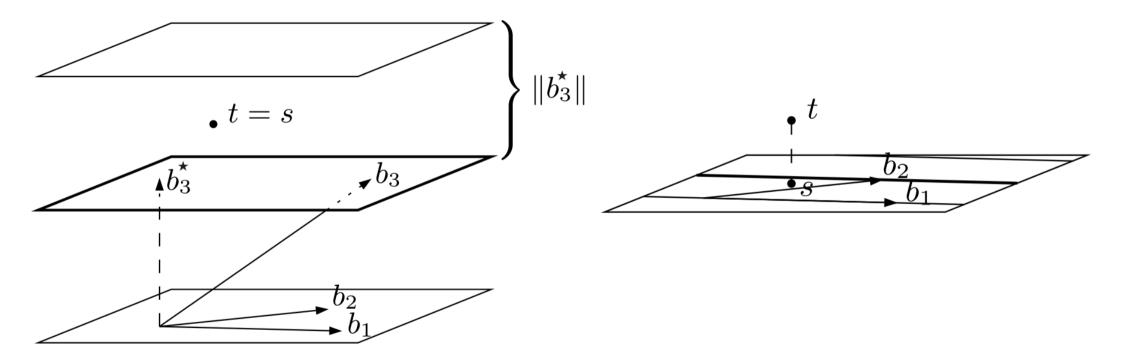
When the basis is LLL-reduced, we have two algorithms at our disposal:

When the basis is LLL-reduced, we have two algorithms at our disposal:

• Rounding Off: Express the vector in the new basis, and set each coordinate to its closest integer

When the basis is LLL-reduced, we have two algorithms at our disposal:

- Rounding Off: Express the vector in the new basis, and set each coordinate to its closest integer
- Nearest Plane: Iteratively project each coordinate, taking into account previous rounding errors



• In our case, both perform the same (reduced basis is near orthogonal)

- State of the art: fpminimax in the Sollya⁶ toolbox
- Newly revisited L^2 prototype

With the same global approach:

- Find a polynomial with real coefficients approximating f (minimax or projection)
- Explore the surroundings to find one with coefficients of the desired size

⁶https://sollya.org T. Hubrecht | NuSCAP Nantes | 26/06/2025

• Take d + 1 points $x_0, ..., x_d$ in I such that $p^*(x_i)$ (the minimax approximation) is as close as possible to $f(x_i)$

• We want to minimize
$$\begin{vmatrix} d \\ \sum_{i=0}^{d} m_i \begin{pmatrix} 2^{e_i} x_0^i \\ \dots \\ 2^{e_i} x_d^i \end{pmatrix} - \begin{pmatrix} f(x_0) \\ \dots \\ f(x_d) \end{pmatrix} \end{vmatrix}_2$$

, which is an instance of the Closest Vector

FIUDIEIII.

- Using a function space as the overall vector space: $\mathscr{F}(I, \mathbb{R})$ (and $\operatorname{Span}_{\mathbb{R}}(x^0, ..., x^n)$ as a subspace)
- Lattice basis are scaled monomials: $x \mapsto 2^{e_i} x^i$
- Euclidean norm as an integral computation

- Weight function: $w: x \mapsto \sqrt{1 x^2}^{-1}$
- Inner product: $\int_{-1}^{1} f(x)g(x)w(x) dx$
- \Rightarrow The projection gives the Chebyshev truncated series

- Using ARB⁷ for the intermediate computations
- High precision (1024-2048 bits) is required so the result is not just an error ball
- $w: x \mapsto \frac{1}{\sqrt{1-x^2}}$ is ill-conditionned at the bounds of I

- Using ARB⁸ for the intermediate computations
- High precision (1024-2048 bits) is required so the result is not just an error ball

 $w: x \mapsto \frac{1}{\sqrt{1-x^2}}$ is ill-conditionned at the bounds of I

• Change of variable: *w* disappears

• Set
$$x = \cos(\theta)$$
, $\langle f, g \rangle = \int_{-1}^{1} (f \times g)(x)w(x)dx = \int_{0}^{\pi} (f \times g)(\cos(\theta))d\theta$

⁸https://flintlib.org/doc/index_arb.html T. Hubrecht | NuSCAP Nantes | 26/06/2025

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{n} h_{k,n} T_n$

[°]Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule T. Hubrecht | NuSCAP Nantes | 26/06/2025

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{\infty} h_{k,n} T_n$

•
$$h_{0,n} = \alpha \times \sum (f \times g)(\mu_k)$$
 where $\mu_k \coloneqq \cos\left(\frac{2k+1}{2n}\pi\right)$, the roots of T_{n+1}

¹⁰Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule T. Hubrecht | NuSCAP Nantes | 26/06/2025

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{\infty} h_{k,n} T_n$

•
$$h_{0,n} = \alpha \times \sum (f \times g)(\mu_k)$$
 where $\mu_k = \cos\left(\frac{2k+1}{2n}\pi\right)$, the roots of T_{n+1}
• For $k \neq 0$, $\int_0^{\pi} T_k(\cos(\theta)) d\theta = \int_0^{\pi} \cos(k\theta) d\theta = 0$

¹¹Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule T. Hubrecht | NuSCAP Nantes | 26/06/2025

0

• View it as a truncated Chebyshev series: $f \times g = \lim_{n \to \infty} \sum_{k=0}^{\infty} h_{k,n} T_n$

•
$$h_{0,n} = \alpha \times \sum (f \times g)(\mu_k)$$
 where $\mu_k = \cos\left(\frac{2k+1}{2n}\pi\right)$, the roots of T_{n+1}
• For $k \neq 0$, $\int_{1}^{\pi} T_k(\cos(\theta)) d\theta = \int_{1}^{\pi} \cos(k\theta) d\theta = 0$

0

Hence,

$$\langle f, g \rangle = \frac{\pi}{n} \lim_{n \to \infty} \sum (f \times g) \left(\cos \left(\frac{2k+1}{2n} \pi \right) \right)$$

which converges exponentially fast¹².

¹²Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule T. Hubrecht | NuSCAP Nantes | 26/06/2025

- Take d + 1 points $x_0, ..., x_d$ in I such that $p^*(x_i)$ (the minimax approximation) is as close as possible to $f(x_i)$
- We want to minimize:

$$\sum_{i=0}^{d} m_{i} \begin{pmatrix} 2^{e_{i}} x_{0}^{i} \\ \dots \\ 2^{e_{i}} x_{d}^{i} \end{pmatrix} - \begin{pmatrix} f(x_{0}) \\ \dots \\ f(x_{d}) \end{pmatrix} \Big|_{2}$$

• Minimize
$$\sum_{j=0}^{d} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x_j^i \right) - f(x_j) \right)^2$$

- When the (x_i) are the Chebyshev nodes, it is the same computation as our integral
- The sum can be seen as an approximation of

$$\underbrace{\int_{-1}^{1} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x^i\right) - f(x)\right)^2 \mathrm{d}x}_{L^2} \sim \underbrace{\frac{1}{d+1} \sum_{j=0}^{d} \left(\sum_{i=0}^{d} m_i \left(2^{e_i} x_j^i\right) - f\left(x_j\right)\right)^2}_{\text{fpminimax}}$$

- Vectors are functions \Rightarrow need of a basis to express them
- Use the same basis!
- Gram matrix: $G \coloneqq (\langle b_i, b_j \rangle)_{i,j \in [[0,n]]}$
- Projection: $V \coloneqq (\langle f, b_i \rangle)_{i \in [0,n]}$

 \Rightarrow we have coordinates scaled by the norm of the b_i

Nearest Plane in Gram form

Input:

- *G*, the Gram matrix of the basis $(b_i)_{i \in [0,n]}$
- V, the projection of f onto the space generated by $(b_i)_{i \in [0,n]}$, in the form $(f|b_i)_{i \in [0,n]}$

Output:

• $X \in \mathbb{N}^{n+1}$ the coordinates of an element of the lattice generated by $(b_i)_{i \in [0,n]}$ close to f

begin

```
D, B = \text{Gram\_Schmidt}(G), \text{ i.e. } G = B^{t}DB
W \leftarrow D^{-1}(B^{t})^{-1}V
for j from n to 0
|X[j] \leftarrow [W[j]]
for i from 0 to n
|W[i] \leftarrow W[i] - X[j]B[i, j]
end
end
return X
end
```

Some results

Degree	Minimax error	Naïve rounding error	fpminimax error	L^2 projection error	Babai error
7	2.5870e-4	2.9446e-4	2.5870e-4	2.9446e-4	2.9446e-4
25	9.9686e-12	1.2099e-11	9.9686e-12	1.2099e-11	1.2099e-11
37	1.7341e-16	2.1254e-16	1.7341e-16	2.1231e-16	2.1236e-16
47	2.0381e-20	9.2094e-18	2.6477e-20	2.4891e-20	2.5526e-20

Maximal relative errors betweens approximating polynomials and arctan over [-1, 1]

- More general view of the minimization problem
- Another tool, complementary to fpminimax, for polynomial approximation
- Trivial extension for multivariate functions (integrate over a *n*-dimensional cube)
- But it does not take into account the evaluation error due to rounding c.f. work by D. Arzelier, F. Bréhard and M. Joldes