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What is it about

• Polynomial approximation: Given 𝑓 : 𝐼 ⊂ ℝ → ℝ, find 𝑃 ∈ ℝ𝑛[𝑋] “close” to 𝑓
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What is it about

• Polynomial approximation: Given 𝑓 : 𝐼 ⊂ ℝ → ℝ, find 𝑃 ∈ ℝ𝑛[𝑋] “close” to 𝑓

• Size-constrained coefficients: That can be represented on some finite amount of memory
(e.g. 64 bits)
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But why ?



Numerical evaluation of functions

We want:

• To evaluate numerically various mathematical functions

• Use computers to do the work
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Limited precision of machine numbers

�̂� = (−1)𝑠 × 2𝑒 × 1.𝑓

log(2) ≈ 0.693147180559945 o(log(2)) = 𝟶𝚡𝟷.𝟼𝟸𝚎𝟺𝟸𝚏𝚎𝚏𝚊𝟹𝟿𝚎𝚏𝚙-𝟷

Where o(𝑥) is the closest floating-point number to 𝑥
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Some basic arithmetic operations

The operations at our disposal are: +, ×, −, √𝑥, /

We need to use approximations to compute numerical values of functions.

In most cases, we work with polynomial approximations:

exp(𝑧) ≈ 𝑎0 + 𝑧 × (𝑎1 + 𝑧 × (𝑎2 + 𝑧 × (𝑎3 + 𝑧 × 𝑎4)))
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Mathematical Libraries

• All programs use libraries: sets of (mostly) standard functions to avoid reinventing the
wheel (and making mistakes).

• To compute mathematical functions, there are “libm”s implementing exp, log, sin, …

• List of mathematical functions defined in standards as IEEE754, ISO/IEC 9899

• Several of them coexist: glibc, LLVM math library, CORE-MATH, …
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Libm constraints

• Speed is a big requirement, those functions will be used more than 100M times

• Accuracy varies and is not always defined
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Correct Rounding

The evaluation ̂𝑓  of a function 𝑓  is correctly rounded is ̂𝑓 (𝑥) is the closest floating-point
value to 𝑓 (𝑥).

It is necessary in multiple domains :

• Distributed computations, HPC

• Any application requiring reproducible results

But, it is a much harder property to guarantee than, e.g., “52 bits of precision” out of the 53
bits of doubles
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Building a libm function

Three steps are usually observed:

1. Range reduction: go from ℝ to 𝐼  a small segment for the inputs
• Using various equalities: e.g. log(2𝑘𝑥) = log(𝑥) + 𝑘 × log(2)

2. Use a polynomial approximation of 𝑓  over 𝐼

3. Reconstruct the final result

• If Correct Rounding is required, this may be done several times with increasing precision
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Example: 𝑥𝑦  in CORE-MATH

• A “library” of correctly-rounded functions¹

• Computed as exp(𝑦 × log(𝑥))

• Three phases to attain Correct Rounding

• Requires 6 polynomial approximations in total

¹https://core-math.gitlabpages.inria.fr/
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Polynomial Approximation



Core Problem

In the end, it is the foundation of numerical evaluation, and needs to be:

• Fast, as it is in the critical path

• Accurate, to not have to redo computations

I.e. we want a polynomial with the smallest number of coefficients possible while
maintaining a necessary accuracy.
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Accuracy, i.e. relative error

What does “𝑞 bits of precision” mean ?

For an approximation 𝑃  of 𝑓  over 𝐼 = [𝑎, 𝑏] ⊂ ℝ:

• Absolute error: ‖𝑃 − 𝑓 ‖∞ ≔ max
𝑥∈𝐼

 ||𝑃(𝑥) − 𝑓 (𝑥)||

• Relative error: 
‖
‖
‖𝑃−𝑓

𝑓 ‖
‖
‖

∞
≔ max

𝑥∈𝐼
 ||
|𝑃(𝑥)−𝑓 (𝑥)

𝑓 (𝑥) ||
|

Thus, “𝑞 bits of precision” means a relative error smaller than 2−𝑞
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Generalized polynomials

• Real polynomial: 𝑄 ≔ ∑ 𝑎𝑖𝑥 𝑖 with 𝑎𝑖 ∈ ℝ, ⇒ used when minimizing absolute errors, but
not enough for relative errors.

• Generalized polynomial: 𝐺 ≔ ∑ 𝑎𝑖𝜑𝑖 ,   with 𝜑𝑖 : ℝ → ℝ

• Special case: ∑ 𝑎𝑖
𝑥 𝑖

𝑓
, ⇒ used when minimizing the relative error, with the target 𝑥 ↦ 1
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Best Approximation: Minimax

For real polynomials, a minimax approximation 𝑝⋆ of 𝑓  over 𝐼 ⊂ ℝ of degree 𝑛 ∈ ℕ is the
polynomial 𝑃 ∈ ℝ𝑛[𝑥] that minimizes the absolute error.

Under some conditions, it is the same using generalized polynomials.

As a non-linear problem, we have an iterative algorithm to solve it.
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Chebyshev polynomial of the first kind

• 𝑇𝑛(cos(𝜃)) = cos(𝑛𝜃)

• Orthogonal family

• 𝑇 −1
𝑛 (0) = {cos(

2𝑘+1
2𝑛

𝜋) : 𝑘 ∈ ⟦0, 𝑛 − 1⟧}
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Non-linear minimax, with linear approximation of the problem

Computing the minimax is a non-linear problem, that can be approximated by linear ones.

• Optimal: minimax polynomial

• Truncated Chebyshev Series or Interpolation polynomial at the Chebyshev nodes of first
kind are “good approximations”
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Lebesgue constant

Λ(𝐿) ≔ sup
𝑓

‖𝐿𝑓 ‖∞
‖𝑓 ‖∞

• For a linear approximation 𝐿, and 𝑝⋆ the minimax, ‖𝑓 − 𝐿𝑓 ‖∞ ≤ (1 + Λ(𝐿)) ‖𝑓 − 𝑝⋆‖∞

• Truncated Chebyshev series of degree 𝑛 > 1 : 
4

𝜋2 log(𝑛 − 1) + 3 > Λ(TCS𝑛) ≥ 4
𝜋2 log(𝑛 + 1)

• Interpolation of degree 𝑛 : 
2
𝜋

log(𝑛 + 1) + 1 ≥ Λ(I𝑛) ≥ 2
𝜋 (log(𝑛 + 1) + 𝛾 + log(

4
𝜋 ))
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𝐿2 projections

In the following, 𝐼 ≔ [−1, 1] (up to a linear change of variable)

The truncated Chebyshev series of degree 𝑛 is the orthogonal projection of 𝑓  onto the

subspace Span(1, 𝑥, …, 𝑥𝑛) for the inner product ⟨𝑓 , 𝑔⟩ ≔ ∫
1

−1
𝑓 𝑔 d𝑥

√1−𝑥2

Therefore, we can approximate the non-linear minimization problem by a projection in
some 𝐿2 function space.
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Machine-efficient polynomials



Recap on limited precision

Without a stroke of luck, real coefficients of polynomial approximations are not
representable as floating-point numbers of fixed precision.
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Practical example: arctan over [−1, 1]

Taken from “Scientific Computing on Itanium-Based Systems”²

• Odd function ⇒ only consider odd powers of 𝑥

• Pin the first coefficient to 1 (save a multiplication)

• Use the symmetry to approximate over [0, 1] instead

• Minimizing the relative error

²M. Cornea and J. Harrison and P. T. P. Tang
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Naïve Rounding

• First idea: round each coefficient of the minimax (best approximation)

• Lose accuracy when increasing the degree (43 vs. 47)
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Lack of a good structure for floating-point numbers

Floating-point numbers are of the form 2𝑒𝑖 𝑚𝑖 with 𝑚𝑖 ∈ ⟦2𝑝−1, 2𝑝 − 1⟧

• For the same exponent, the values are regularly placed on the reals

• But not when the exponent changes… ⇒ non linear set
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Finding the best coefficients

For each coefficient, we need to find both 𝑒𝑖 and 𝑚𝑖

• Finding both at the same time is tricky

• We first set 𝑒𝑖 and then search for a corresponding 𝑚𝑖
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Heuristically pinning the exponents

• Compute the projection with real coefficients 𝑃 = ∑ 𝑎𝑖𝑥 𝑖 and set 𝑒𝑖 ≔ ⌊𝑝𝑖 − log2(|𝑎𝑖 |)⌋

• Works when the precision is high enough (e.g. doubles)

• If it fails, adjust the exponents and start again

T. Hubrecht | NuSCAP Nantes | 26/06/2025 26



Closest Vector Problem

We look for an approximation of the form 𝑃 : 𝑥 ↦ ( ∑
𝑛

𝑖=0
𝑚𝑖2𝑒𝑖 ⋅ 𝑥 𝑖

), |𝑚𝑖 | ∈ ℕ < 2𝑝 − 1.

• When 𝑒𝑖 is set heuristically, we search for a vector of the lattice generated by

(2𝑒𝑖 ⋅ 𝑥 𝑖)𝑖∈⟦0,𝑛⟧ that is close to 𝑓 .

• For relative error, use the basis (2𝑒𝑖 ⋅ 𝑥 𝑖

𝑓 )
𝑖∈⟦0,𝑛⟧

 and the target 𝑥 ↦ 1
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Euclidean Lattices

A Euclidean lattice is 𝐿 ≔ Spanℤ(𝑏0, …, 𝑏𝑛), for (𝑏𝑖)𝑖∈[0,𝑛] a family of linearly independant

vectors.

𝐸 ⊃ 𝐿 is a vector space.

The “Closest Vector Problem” is, for 𝑥 ∈ 𝐸 and ‖ ⋅ ‖ a norm over 𝐸, to find 𝑦 ∈ 𝐿 such that ‖𝑥 −
𝑦‖ is small.
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Euclidean Lattices

A Euclidean lattice is 𝐿 ≔ Spanℤ(𝑏0, …, 𝑏𝑛), for (𝑏𝑖)𝑖∈[0,𝑛] a family of linearly independant

vectors.

𝐸 ⊃ 𝐿 is a vector space.

The “Closest Vector Problem” is, for 𝑥 ∈ 𝐸 and ‖ ⋅ ‖ a norm over 𝐸, to find 𝑦 ∈ 𝐿 such that ‖𝑥 −
𝑦‖ is small.
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The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

³Nguyen, P.Q., Stehlé, D. (2006). LLL on the Average
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The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, 𝑏𝑖 = 𝑏⋆
𝑖  its orthogonalised vector.
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The LLL algorithm (improving the basis)

For a generic basis, solving CVP or a polynomial approximation of it is hard.

In a perfect world, 𝑏𝑖 = 𝑏⋆
𝑖  its orthogonalised vector.

0

a1

a2b1

b2

LLL algorithm: transforms (𝑎0, …, 𝑎𝑛) into (𝑏0, …, 𝑏𝑛) such that ‖𝑏1‖ ≤ 2
𝑛
2 min

𝑥∈𝐿 (‖𝑥‖).

In our case, the basis is not average5 and gives better results.

5Nguyen, P.Q., Stehlé, D. (2006). LLL on the Average
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Polynomial bases are special

Starting Lattice basis 𝑥3⏟
𝑎0

, 𝑥5⏟
𝑎1

, … 𝑥47⏟
𝑎22

, and 𝑎⋆
0 , …𝑎⋆

22 the orthogonalized family, transformed

into (𝑏0, …, 𝑏22) and (𝑏⋆
0 , …, 𝑏⋆

22)

Orthogonality defect: measures how non-orthogonal the lattice basis is
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Solving the Approximate CVP: Babai algorithms

When the basis is LLL-reduced, we have two algorithms at our disposal:

T. Hubrecht | NuSCAP Nantes | 26/06/2025 31



Solving the Approximate CVP: Babai algorithms

When the basis is LLL-reduced, we have two algorithms at our disposal:

• Rounding Off: Express the vector in the new basis, and set each coordinate to its closest
integer

•
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Solving the Approximate CVP: Babai algorithms

When the basis is LLL-reduced, we have two algorithms at our disposal:

• Rounding Off: Express the vector in the new basis, and set each coordinate to its closest
integer

• Nearest Plane: Iteratively project each coordinate, taking into account previous rounding
errors
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• In our case, both perform the same (reduced basis is near orthogonal)

T. Hubrecht | NuSCAP Nantes | 26/06/2025 32



Implementations

• State of the art: fpminimax in the Sollya6 toolbox

• Newly revisited 𝐿2 prototype

With the same global approach:

• Find a polynomial with real coefficients approximating 𝑓  (minimax or projection)

• Explore the surroundings to find one with coefficients of the desired size

6https://sollya.org
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Fpminimax: Discretization

• Take 𝑑 + 1 points 𝑥0, …, 𝑥𝑑  in 𝐼  such that 𝑝⋆(𝑥𝑖) (the minimax approximation) is as close
as possible to 𝑓 (𝑥𝑖)

• We want to minimize 
|
|
|
|
∑
𝑑

𝑖=0
𝑚𝑖

(
(
(
(2𝑒𝑖𝑥 𝑖

0
…

2𝑒𝑖𝑥 𝑖
𝑑)
)
)
)

−
(

𝑓 (𝑥0)
…

𝑓 (𝑥𝑑))|
|
|
|

2

, which is an instance of the Closest Vector

Problem.
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𝐿2: A functional view

• Using a function space as the overall vector space: ℱ (𝐼 , ℝ)
(and Spanℝ(𝑥0, …, 𝑥𝑛) as a subspace)

• Lattice basis are scaled monomials: 𝑥 ↦ 2𝑒𝑖 𝑥 𝑖

• Euclidean norm as an integral computation
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Integral inner product

• Weight function: 𝑤 : 𝑥 ↦ √1 − 𝑥2
−1

• Inner product: ∫
1

−1
𝑓 (𝑥)𝑔(𝑥)𝑤(𝑥) d𝑥

⇒ The projection gives the Chebyshev truncated series
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Computing integrals

• Using ARB7 for the intermediate computations
• High precision (1024-2048 bits) is required so the result is not just an error ball

𝑤 : 𝑥 ↦ 1
√1−𝑥2  is ill-conditionned at the bounds of 𝐼

7https://flintlib.org/doc/index_arb.html
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Computing integrals

• Using ARB8 for the intermediate computations
• High precision (1024-2048 bits) is required so the result is not just an error ball

𝑤 : 𝑥 ↦ 1
√1−𝑥2  is ill-conditionned at the bounds of 𝐼

• Change of variable: 𝑤 disappears

‣ Set 𝑥 = cos(𝜃),   ⟨𝑓 , 𝑔⟩ = ∫
1

−1
(𝑓 × 𝑔)(𝑥)𝑤(𝑥)d𝑥 = ∫

𝜋

0
(𝑓 × 𝑔)(cos(𝜃))d𝜃

8https://flintlib.org/doc/index_arb.html
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Chebyshev strikes again

• View it as a truncated Chebyshev series: 𝑓 × 𝑔 = lim
𝑛→∞

∑
𝑛

𝑘=0
ℎ𝑘,𝑛𝑇𝑛

•

•

9Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule
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∑
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• ℎ0,𝑛 = 𝛼 × ∑(𝑓 × 𝑔)(𝜇𝑘) where 𝜇𝑘 ≔ cos(
2𝑘+1

2𝑛
𝜋), the roots of 𝑇𝑛+1
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𝜋

0
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𝜋

0
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Chebyshev strikes again

• View it as a truncated Chebyshev series: 𝑓 × 𝑔 = lim
𝑛→∞

∑
𝑛

𝑘=0
ℎ𝑘,𝑛𝑇𝑛

• ℎ0,𝑛 = 𝛼 × ∑(𝑓 × 𝑔)(𝜇𝑘) where 𝜇𝑘 ≔ cos(
2𝑘+1

2𝑛
𝜋), the roots of 𝑇𝑛+1

• For 𝑘 ≠ 0, ∫
𝜋

0
𝑇𝑘(cos(𝜃)) d𝜃 = ∫

𝜋

0
cos(𝑘𝜃) d𝜃 = 0

Hence,

⟨𝑓 , 𝑔⟩ =
𝜋
𝑛

lim
𝑛→∞

∑(𝑓 × 𝑔)(cos(
2𝑘 + 1

2𝑛
𝜋))

which converges exponentially fast¹².

¹²Trefethen, Lloyd N. and Weideman, J. A. C., The Exponentially Convergent Trapezoidal Rule
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Fpminimax: Discretization

• Take 𝑑 + 1 points 𝑥0, …, 𝑥𝑑  in 𝐼  such that 𝑝⋆(𝑥𝑖) (the minimax approximation) is as close
as possible to 𝑓 (𝑥𝑖)

• We want to minimize:

|
|
|
|
|
∑
𝑑

𝑖=0
𝑚𝑖

(
(
(
(
(2𝑒𝑖 𝑥 𝑖

0
…

2𝑒𝑖 𝑥 𝑖
𝑑 )

)
)
)
)

−

((
((
((𝑓 (𝑥0)

…
𝑓 (𝑥𝑑)))

))
))

|
|
|
|
|

2
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Fpminimax: a special case of 𝐿2 ?

• Minimize ∑
𝑑

𝑗=0 (
∑
𝑑

𝑖=0
𝑚𝑖(2𝑒𝑖 𝑥 𝑖

𝑗) − 𝑓 (𝑥𝑗))

2

• When the (𝑥𝑗) are the Chebyshev nodes, it is the same computation as our integral

• The sum can be seen as an approximation of

∫

1

−1
(

∑
𝑑

𝑖=0
𝑚𝑖(2𝑒𝑖 𝑥 𝑖) − 𝑓 (𝑥)

)

2

d𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿2

∼
1

𝑑 + 1
∑
𝑑

𝑗=0 (
∑
𝑑

𝑖=0
𝑚𝑖(2𝑒𝑖 𝑥 𝑖

𝑗) − 𝑓 (𝑥𝑗))

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fpminimax
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Closest Vector Problem: Gram form

• Vectors are functions ⇒ need of a basis to express them

• Use the same basis!

• Gram matrix: 𝐺 ≔ (⟨𝑏𝑖 , 𝑏𝑗⟩)𝑖,𝑗∈⟦0,𝑛⟧

• Projection: 𝑉 ≔ (⟨𝑓 , 𝑏𝑖⟩)𝑖∈⟦0,𝑛⟧

⇒ we have coordinates scaled by the norm of the 𝑏𝑖

T. Hubrecht | NuSCAP Nantes | 26/06/2025 41



Nearest Plane in Gram form

Input:

• 𝐺, the Gram matrix of the basis (𝑏𝑖)𝑖∈⟦0,𝑛⟧
• 𝑉 , the projection of 𝑓  onto the space generated by (𝑏𝑖)𝑖∈⟦0,𝑛⟧, in the form (𝑓 |𝑏𝑖)𝑖∈⟦0,𝑛⟧

Output:

• 𝑋 ∈ ℕ𝑛+1 the coordinates of an element of the lattice generated by (𝑏𝑖)𝑖∈⟦0,𝑛⟧ close to 𝑓

begin

𝐷, 𝐵 ≔ Gram_Schmidt(𝐺), i.e. 𝐺 = 𝐵𝑡𝐷𝐵
𝑊 ← 𝐷−1(𝐵𝑡)

−1
𝑉

for 𝑗 from 𝑛 to 0
𝑋[𝑗] ← ⌊𝑊 [𝑗]⌉
for 𝑖 from 0 to 𝑛

𝑊 [𝑖] ← 𝑊 [𝑖] − 𝑋[𝑗]𝐵[𝑖, 𝑗]
end

end

return 𝑋
end
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Some results



Table

Degree Minimax error Naïve rounding error fpminimax error 𝐿2 projection error Babai error

7 2.5870e-4 2.9446e-4 2.5870e-4 2.9446e-4 2.9446e-4

25 9.9686e-12 1.2099e-11 9.9686e-12 1.2099e-11 1.2099e-11

37 1.7341e-16 2.1254e-16 1.7341e-16 2.1231e-16 2.1236e-16

47 2.0381e-20 9.2094e-18 2.6477e-20 2.4891e-20 2.5526e-20

Maximal relative errors betweens approximating polynomials and arctan over [−1, 1]
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Conclusion

• More general view of the minimization problem

• Another tool, complementary to fpminimax, for polynomial approximation

• Trivial extension for multivariate functions (integrate over a 𝑛-dimensional cube)

• But it does not take into account the evaluation error due to rounding
c.f. work by D. Arzelier, F. Bréhard and M. Joldes
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